Seasonal Variation of Nitrate Concentration and Its Direct Radiative Forcing over East Asia
نویسنده
چکیده
This study investigated the seasonal variation of nitrate concentration and its radiative forcing over East Asia by using an online-coupled regional climate model. Comparison with a series of in-situ observations from Acid Deposition Monitoring Network in East Asia (EANET) and China demonstrated a good skill of the model in reproducing the magnitude and seasonality of nitrate concentration across East Asia. It was found that nitrate concentration in Beijing and Tianjin exhibited the maximum in summer and the minimum in winter possibly due to stronger chemical oxidation and regional transport effect of larger emissions from the north China Plain in summer, whereas in most areas of East Asia, nitrate concentration was higher in winter and lower in summer, consistent with the seasonality of NOx emission. Surface nitrate concentration was higher over the lower reaches of the Yellow River, followed by the middle to lower reaches of the Yangtze River and portions of south China, and lower in Korean Peninsula and Japan. The annual mean surface nitrate concentration was predicted to be 2.9 μg ̈m ́3 for East Asia and 8.5 μg ̈m ́3 for east China. All-sky direct radiative forcing (DRF) due to nitrate at the top of the atmosphere (TOA) exhibited the largest forcing up to ́7 W ̈m ́2 over the lower reaches of the Yellow River, and lower forcing of ~ ́2 W ̈m ́2 in the Korean Peninsula and Japan. Clear-sky DRF by nitrate reached the maximum in spring and the minimum in summer over both East Asia and east China, whereas DRF under all-sky condition showed its maximum in autumn, associated with seasonalities of nitrate column burden, relative humidity, and cloud effect. Annual mean all-sky DRFs at TOA were estimated to be ́1.7 W ̈m ́2 and ́3.7 W ̈m ́2 over East Asia and east China, respectively, significantly larger than global annual mean, suggesting the important role of nitrate aerosol in environment and climate change over East Asia.
منابع مشابه
Contribution of ammonium nitrate to aerosol optical depth and direct radiative forcing by aerosols over East Asia
This study focused on the contribution of ammonium nitrate (NH4NO3) to aerosol optical depth (AOD) and direct radiative forcing (DRF) by aerosols over an East Asian domain. In order to evaluate the contribution, chemistrytransport model (CTM)-estimated AOD was combined with satellite-retrieved AOD, utilizing a data assimilation technique, over East Asia for the entire year of 2006. Using the as...
متن کاملEffects of Aerosols on Radiative Forcing and Climate Over East Asia With Different SO2 Emissions
It is known that aerosol and precursor gas emissions over East Asia may be underestimated by 50% due to the absence of data on regional rural and township industries. As the most important element of anthropogenic emissions, sulphur dioxide (SO2) can form sulfate aerosols through several chemical processes, thus affecting the regional and global climate. In this study, we use the Community Atmo...
متن کاملEffects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing
The effect of aqueous versus crystalline sulfatenitrate-ammonium tropospheric particles on global aerosol direct radiative forcing is assessed. A global threedimensional chemical transport model predicts sulfate, nitrate, and ammonium aerosol mass. An aerosol thermodynamics model is called twice, once for the upper side (US) and once for lower side (LS) of the hysteresis loop of particle phase....
متن کاملThe Kuroshio nutrient stream and its temporal variation in the East China Sea
[1] Using in situ data from 88 cruises from 1987 to 2009 in the East China Sea, downstream nutrient flux (the product of velocity and nutrient concentration) and nutrient transport (integration of flux over a section) by Kuroshio were examined. The presence of a maximum nutrient flux core in the middle layer was confirmed. Seasonal variation in the nutrient flux was not significant and was much...
متن کاملClimatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 1: Aerosol trends and radiative forcing
We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950–2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980–2010 trends of aerosol ...
متن کامل